z-logo
Premium
Calibration of cellular automata models using differential evolution to simulate present and future land use
Author(s) -
Feng Yongjiu,
Tong Xiaohua
Publication year - 2018
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/tgis.12331
Subject(s) - cellular automaton , calibration , differential evolution , computer science , minification , function (biology) , genetic algorithm , baseline (sea) , differential (mechanical device) , data mining , algorithm , machine learning , statistics , mathematics , engineering , geology , oceanography , evolutionary biology , aerospace engineering , biology , programming language
A key issue in cellular automata (CA) modeling is the minimization of the differences between the actual and simulated patterns, which can be mathematically formulated as an objective function. We develop a new hybrid model (termed DE‐CA) by integrating differential evolution (DE) into CA to solve the objective function and retrieve the optimal CA parameters. Constrained relations among factors were applied in DE to generate different sets of CA parameters for prediction of future scenarios. The DE‐CA model was calibrated using historical spatial data to simulate 2016 land use in Kunming and predict multiple scenarios to the year 2026. Assessment of quantitative accuracy shows that DE‐CA yields 92.4% overall accuracy, where 6.8% is the correctly captured urban growth; further, the model reported only 5.0% false alarms and 2.6% misses. Regarding the simulation ability, our new CA model performs as well as the widely applied genetic algorithm‐based CA model, and outperforms both the logistic regression‐based CA model and a no‐change NULL model. We projected three possible scenarios for the year 2026 using DE‐CA to adequately address the baseline urban growth, environmental protection and urban planning to show the strong prediction ability of the new model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here