Premium
An adaptive method for clustering spatio‐temporal events
Author(s) -
Li Zhilin,
Liu Qiliang,
Tang Jianbo,
Deng Min
Publication year - 2018
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/tgis.12312
Subject(s) - cluster analysis , computer science , data mining , entropy (arrow of time) , pattern recognition (psychology) , event (particle physics) , artificial intelligence , quantum mechanics , physics
The clustering of spatio‐temporal events has become one of the most important research branches of spatio‐temporal data mining. However, the discovery of clusters of spatio‐temporal events with different shapes and densities remains a challenging problem because of the subjectivity in the choice of two critical parameters: the spatio‐temporal window for estimating the density around each event, and the density threshold for evaluating the significance of clusters. To make the clustering of spatio‐temporal events objective, in this study these two parameters were adaptively generated from statistical information about the dataset. More precisely, the density threshold was statistically modeled as an adjusted significance level controlled by the cardinality and support domain of the dataset, and the appropriate sizes of spatio‐temporal windows for clustering were determined by the spatio‐temporal classification entropy and stability analysis. Experiments on both simulated and earthquake datasets were conducted, and the results show that the proposed method can identify clusters of different shapes and densities.