Premium
Knowledge Transfer for Large‐Scale Urban Growth Modeling Based on Formal Concept Analysis
Author(s) -
Lin Jinyao,
Li Xia
Publication year - 2016
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/tgis.12172
Subject(s) - cellular automaton , computer science , process (computing) , scale (ratio) , knowledge transfer , formal concept analysis , data mining , artificial intelligence , geography , algorithm , cartography , knowledge management , operating system
Cellular automata (CA) are useful for studies on urban growth and land‐use changes. Although various methods have been developed to define transition rules, modeling urban growth of large areas remains a tough challenge owing to heterogeneous geographical features. To address the problem, we present a novel method based on the combination of Formal Concept Analysis (FCA) and knowledge transfer techniques. FCA is used to solicit association rules among cities within a large area. This method can provide a theoretical basis for the knowledge transfer process. A cutting‐edge algorithm called TrAdaBoost is then integrated with the commonly‐used Logistic‐CA as the modeling framework. The proposed method is applied to the urban growth modeling of Guangdong Province, a large region with 21 cities in China, from 2005 to 2008. Compared with traditional methods, this method can achieve better results at the provincial and local levels, according to the experiments. The combination of FCA and knowledge transfer is expected to provide a useful tool for calibrating large‐scale urban CA models.