z-logo
Premium
Salt décollement and rift inheritance controls on crustal deformation in orogens
Author(s) -
Grool Arjan R.,
Huismans Ritske S.,
Ford Mary
Publication year - 2019
Publication title -
terra nova
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.353
H-Index - 89
eISSN - 1365-3121
pISSN - 0954-4879
DOI - 10.1111/ter.12428
Subject(s) - geology , décollement , rift , inversion (geology) , stack (abstract data type) , tectonics , seismology , petrology , paleontology , computer science , programming language
We investigate the factors that control the shortening distribution and its evolution through time in orogenic belts using numerical models. We present self‐consistent high‐resolution numerical models that simulate the inversion of a rift to generate an upper crustal antiformal stack, a wide outer pro‐wedge fold‐and‐thrust belt, characterised by a two‐phase evolution with early symmetric inversion followed by formation of an asymmetric doubly‐vergent orogen. We show that a weak viscous salt décollement promotes gravitational collapse of the cover. When combined with efficient erosion of the orogenic core and sedimentation in adjacent forelands, it ensures the thick‐skinned pro‐wedge taper remains subcritical, promoting formation of an upper crustal antiformal stack. Rift inheritance promotes a two‐phase shortening distribution evolution regardless of the shallow structure and other factors. Comparison to the Pyrenees strongly suggests that this combination of factors led to a very similar evolution and structural style.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here