Premium
Plio‐Pleistocene increase of erosion rates in mountain belts in response to climate change
Author(s) -
Herman Frédéric,
Champagnac JeanDaniel
Publication year - 2016
Publication title -
terra nova
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.353
H-Index - 89
eISSN - 1365-3121
pISSN - 0954-4879
DOI - 10.1111/ter.12186
Subject(s) - glacial period , geology , northern hemisphere , erosion , climate change , physical geography , climatology , ice sheet , milankovitch cycles , climate oscillation , global cooling , paleoclimatology , ice age , paleontology , global warming , geomorphology , effects of global warming , oceanography , geography
Here, we review an ensemble of observations that point towards a global increase of erosion rates in regions of elevated mountain belts, or otherwise high relief, since the onset of Northern Hemisphere Glaciation about 2–3 Ma. During that period of Earth's history, atmospheric CO 2 concentrations may have dropped, and global climate cooled and evolved towards high‐amplitude oscillating conditions that are associated with the waxing and waning of continental ice sheets in the Northern Hemisphere. We argue for a correlation between climate change and increased erosion rates and relief production, which we attribute to some combination of the observed cooling, onset of glaciation, and climatic oscillation at orbital timescales. In our view, glacial erosion played a major role and is driven by the global cooling. Furthermore, analyses of the sedimentary fluxes of many mountain belts show peaks of erosion during the transitions between glacial and inter‐glacial periods, suggesting that the variable climatic conditions have also played a role.