Premium
Phylogenetics, historical biogeography and molecular species delimitation of Gnaptorina Reitter (Coleoptera: Tenebrionidae: Blaptini)
Author(s) -
Li XiuMin,
Bai XingLong,
Kergoat Gael J.,
Pan Zhao,
Ren GuoDong
Publication year - 2021
Publication title -
systematic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 66
eISSN - 1365-3113
pISSN - 0307-6970
DOI - 10.1111/syen.12459
Subject(s) - subgenus , subspecies , biogeography , biology , zoology , molecular phylogenetics , taxonomy (biology) , genus , phylogenetics , clade , evolutionary biology , ecology , biochemistry , gene
With 38 described species or subspecies, Gnaptorina Reitter is the second‐most species‐rich genus in the darkling beetle subtribe Gnaptorinina (Tenebrionidae: Tenebrioninae). In this study, we reconstructed a phylogeny of the genus based on one nuclear and three mitochondrial genes and used this phylogeny to explore the historical biography and diversification of Gnaptorina species. We implemented multiple molecular species delimitation approaches to reassess the status of Gnaptorina species and taxonomic subdivisions of the genus. Dating and historical biogeography analyses suggest an early Eocene origin of the genus, with the southeastern regions of the Tibetan Plateau most likely as areas of origin. Based on these results, we propose a new classification for Gnaptorina with three major clades identified. Consequently, the monotypic subgenus Boreoptorina is newly synonymized with the more species‐rich subgenus Hesperoptorina, and G. dongdashanensis Shi is transferred from Hesperoptorina to the subgenus Gnaptorina . In addition, G. minxiana Medvedev, formerly treated as a subspecies of G. potanini Reitter, is elevated to species. Results of molecular species delimitation analyses are largely congruent and confirm the status of most morphological species.