Premium
Long‐term effects of animal manure and mineral fertilizers on phosphorus availability and silage maize growth
Author(s) -
Jing Jingying,
Christensen Julie T.,
Sørensen Peter,
Christensen Bent T.,
Rubæk Gitte H.
Publication year - 2019
Publication title -
soil use and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.709
H-Index - 81
eISSN - 1475-2743
pISSN - 0266-0032
DOI - 10.1111/sum.12477
Subject(s) - manure , agronomy , phosphorus , fertilizer , nutrient , dry weight , silage , potassium , long term experiment , chemistry , zoology , biology , organic chemistry
A better appraisal of the plant availability of soil phosphorus (P) added with animal manure is crucial to alleviate environmental impacts from over‐application of P. This study compares the availability of P to maize in the Askov long‐term experiments using unmanured plots and plots receiving corresponding rates of nitrogen (N), P and potassium (K) in mineral fertilizers or manure. Total‐P and water extractable P (Pw) in soil, and plant height, dry weight, P concentration and P uptake were determined in early August. Final yields were determined in late October. Soil Pw was similar for plots receiving corresponding rates of P in mineral fertilizer or manure form. With a strong relationship between Pw, and maize growth and final yields, Pw was a reliable indicator of P availability to maize. Plant dry weight, P concentration and P uptake in early August were 23%, 8% and 31% higher, respectively, for maize grown on soil receiving manure compared with mineral fertilizer, while final maize yield in late October was 13% higher. Plant height and dry weight determined in early August suggested that maize development at this growth stage defined final maize yield. We conclude that the availability of P was similar after long‐term application of corresponding rates of P in animal manure and mineral fertilizers, and that animal manure improves the growth of maize compared to mineral fertilizers. This is ascribed to micronutrients and residual N effects from previous additions of manure.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom