Premium
Long‐term effects of animal manure and mineral fertilizers on phosphorus availability and silage maize growth
Author(s) -
Jing Jingying,
Christensen Julie T.,
Sørensen Peter,
Christensen Bent T.,
Rubæk Gitte H.
Publication year - 2019
Publication title -
soil use and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.709
H-Index - 81
eISSN - 1475-2743
pISSN - 0266-0032
DOI - 10.1111/sum.12477
Subject(s) - manure , agronomy , phosphorus , fertilizer , nutrient , dry weight , silage , potassium , long term experiment , chemistry , zoology , biology , organic chemistry
A better appraisal of the plant availability of soil phosphorus (P) added with animal manure is crucial to alleviate environmental impacts from over‐application of P. This study compares the availability of P to maize in the Askov long‐term experiments using unmanured plots and plots receiving corresponding rates of nitrogen (N), P and potassium (K) in mineral fertilizers or manure. Total‐P and water extractable P (Pw) in soil, and plant height, dry weight, P concentration and P uptake were determined in early August. Final yields were determined in late October. Soil Pw was similar for plots receiving corresponding rates of P in mineral fertilizer or manure form. With a strong relationship between Pw, and maize growth and final yields, Pw was a reliable indicator of P availability to maize. Plant dry weight, P concentration and P uptake in early August were 23%, 8% and 31% higher, respectively, for maize grown on soil receiving manure compared with mineral fertilizer, while final maize yield in late October was 13% higher. Plant height and dry weight determined in early August suggested that maize development at this growth stage defined final maize yield. We conclude that the availability of P was similar after long‐term application of corresponding rates of P in animal manure and mineral fertilizers, and that animal manure improves the growth of maize compared to mineral fertilizers. This is ascribed to micronutrients and residual N effects from previous additions of manure.