Premium
Evaluation of power extraction circuits on piezo‐transducers operating under low‐frequency vibration‐induced strains in bridges
Author(s) -
Balguvhar Sumit,
Bhalla Suresh
Publication year - 2019
Publication title -
strain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.477
H-Index - 47
eISSN - 1475-1305
pISSN - 0039-2103
DOI - 10.1111/str.12303
Subject(s) - energy harvesting , vibration , acoustics , structural engineering , transducer , girder , electrical engineering , voltage , piezoelectricity , engineering , power (physics) , materials science , physics , quantum mechanics
The concept of piezoelectric energy harvesting (PEH) provides a promising solution for perpetually running low‐power electronic devices such as wireless sensor networks by harvesting ambient vibrations generated from civil structures such as long span bridges, city flyovers, elevated metro corridors, which are constantly under dynamic loads. However, its successful industrial‐scale deployment on civil structures is still not realised because of the low‐frequency of vibrations (typically <5 Hz) encountered there, coupled with the low levels of voltage generation. The vast majority of PEH‐related studies have only focused on PEH configurations and geometries, Often entailing secondary structures. d 31 mode, which is the most natural mode of excitation, has not been investigated in depth for piezo‐patches directly bonded on the main structure. Studies, which have focused on electronic conditioning circuitry, have been restricted to typically high‐voltage and high‐frequency scenarios only. This paper focuses on systematically studying the issues inflicting energy harvesting from the ambient vibrations induced flexural strains civil structures, such as city flyovers, using piezo elements in d 31 mode. Vibration measurements are first undertaken from a typical city flyover consisting of steel girders supporting a reinforced concrete (RC) deck. The basic site measurements are employed to perform a laboratory‐based parametric study to investigate the influence of parameters such as vibration frequency, voltage, and circuit components like diodes on PEH. On the basis of the experimental results, it can be concluded that power in microwatts range can be typically harvested from these civil structures through directly bonded piezo patches in d 31 mode. However, there are still issues associated with electronic circuitry accompanying harvesters, such as diodes and storage elements. The same are summarised and future directions envisioned.