z-logo
Premium
Mechanical properties of rock specimens containing pre‐existing flaws with 3 D printed materials
Author(s) -
Tian Wei,
Han NV
Publication year - 2017
Publication title -
strain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.477
H-Index - 47
eISSN - 1475-1305
pISSN - 0039-2103
DOI - 10.1111/str.12240
Subject(s) - compressive strength , materials science , compression (physics) , composite material , inclination angle , structural engineering , engineering
Three‐dimensional printing (3DP) technology has undergone a rapid development in the last few years and become a useful tool in many research fields. This study applied 3DP technology to prepare solid specimens simulating rock‐type materials combined with computed tomography scanning and 3D image processing. 3DP specimens with pre‐existing flaws in different inclination angles were fabricated and then conducted a series of mechanical experiments to study the influence of number and inclination angle of pre‐existing flaw on strength and failure patterns under uniaxial compression. The experimental results indicated that 3DP specimens had similar mechanical properties with rock‐type materials. The 3DP specimens with 2 pre‐existing flaws had lower compressive strength with an average of 4.26 MPa, whereas compressive strength of specimens with one flaw was no less than 5.08 MPa. Different inclination angles led to various failure patterns and compressive strengths, which took on a V‐shaped curve with the increase of inclination angles. This study demonstrated that 3DP technology provided a new perspective for conducting laboratory experimental research of rock mechanics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here