Premium
Residual and local influence analyses for unit gamma regressions
Author(s) -
S. Rocha Suelena,
L. Espinheira Patrícia,
CribariNeto Francisco
Publication year - 2021
Publication title -
statistica neerlandica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 39
eISSN - 1467-9574
pISSN - 0039-0402
DOI - 10.1111/stan.12229
Subject(s) - residual , covariate , mathematics , econometrics , statistics , regression , weighting , studentized residual , regression analysis , local regression , polynomial regression , algorithm , medicine , radiology
We obtain local influence measures and residuals for the unit gamma regression model. In particular, we introduce four residuals that are based on Fisher's iterative scoring parameter estimation algorithm and develop local influence analysis based on several different perturbation schemes: cases weighting, response additive perturbation, and covariate(s) additive perturbation. An empirical application in which variables related to education and investment in research and development are used to explain the proportion of nonpoor people in a set of countries is presented and discussed. Residual and local influence analyses show that the unit gamma regression model yields a good fit to the data, even outperforming the beta regression model. The diagnostic analysis singles out countries whose data are worthy of further investigation. Our results reveal that lower poverty levels are associated with higher shares of investment in high technology. The statistical significance of such a relationship is not sensitive to atypical data points.