Premium
Concentration behavior of the penalized least squares estimator
Author(s) -
Muro Alan,
Geer Sara
Publication year - 2018
Publication title -
statistica neerlandica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 39
eISSN - 1467-9574
pISSN - 0039-0402
DOI - 10.1111/stan.12123
Subject(s) - mathematics , estimator , least squares function approximation , closeness , function (biology) , mathematical optimization , nonparametric statistics , statistics , mathematical analysis , evolutionary biology , biology
Consider the standard nonparametric regression model and take as estimator the penalized least squares function. In this article, we study the trade‐off between closeness to the true function and complexity penalization of the estimator, where complexity is described by a seminorm on a class of functions. First, we present an exponential concentration inequality revealing the concentration behavior of the trade‐off of the penalized least squares estimator around a nonrandom quantity, where such quantity depends on the problem under consideration. Then, under some conditions and for the proper choice of the tuning parameter, we obtain bounds for this nonrandom quantity. We illustrate our results with some examples that include the smoothing splines estimator.