Premium
Tuning parameter selection in penalized generalized linear models for discrete data
Author(s) -
Androulakis E.,
Koukouvinos C.,
Vonta F.
Publication year - 2014
Publication title -
statistica neerlandica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 39
eISSN - 1467-9574
pISSN - 0039-0402
DOI - 10.1111/stan.12033
Subject(s) - mathematics , generalized linear model , lasso (programming language) , estimator , least absolute deviations , mathematical optimization , model selection , linear model , resampling , linear regression , algorithm , statistics , computer science , world wide web
In recent years, we have seen an increased interest in the penalized likelihood methodology, which can be efficiently used for shrinkage and selection purposes. This strategy can also result in unbiased, sparse, and continuous estimators. However, the performance of the penalized likelihood approach depends on the proper choice of the regularization parameter. Therefore, it is important to select it appropriately. To this end, the generalized cross‐validation method is commonly used. In this article, we firstly propose new estimates of the norm of the error in the generalized linear models framework, through the use of Kantorovich inequalities. Then these estimates are used in order to derive a tuning parameter selector in penalized generalized linear models. The proposed method does not depend on resampling as the standard methods and therefore results in a considerable gain in computational time while producing improved results. A thorough simulation study is conducted to support theoretical findings; and a comparison of the penalized methods with the L 1 , the hard thresholding, and the smoothly clipped absolute deviation penalty functions is performed, for the cases of penalized Logistic regression and penalized Poisson regression. A real data example is being analyzed, and a discussion follows. © 2014 The Authors. Statistica Neerlandica © 2014 VVS.