Premium
Forecasting inflation using time‐varying Bayesian model averaging
Author(s) -
Maas Jordi
Publication year - 2014
Publication title -
statistica neerlandica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.52
H-Index - 39
eISSN - 1467-9574
pISSN - 0039-0402
DOI - 10.1111/stan.12027
Subject(s) - econometrics , bayesian probability , inflation (cosmology) , gdp deflator , gross domestic product , consensus forecast , bayesian vector autoregression , statistics , computer science , mathematics , economics , real gross domestic product , economic growth , physics , theoretical physics
This paper presents a Bayesian model averaging regression framework for forecasting US inflation, in which the set of predictors included in the model is automatically selected from a large pool of potential predictors and the set of regressors is allowed to change over time. Using real‐time data on the 1960–2011 period, this model is applied to forecast personal consumption expenditures and gross domestic product deflator inflation. The results of this forecasting exercise show that, although it is not able to beat a simple random‐walk model in terms of point forecasts, it does produce superior density forecasts compared with a range of alternative forecasting models. Moreover, a sensitivity analysis shows that the forecasting results are relatively insensitive to prior choices and the forecasting performance is not affected by the inclusion of a very large set of potential predictors.