Premium
Local Whittle likelihood approach for generalized divergence
Author(s) -
Xue Yujie,
Taniguchi Masanobu
Publication year - 2020
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12418
Subject(s) - mathematics , estimator , nonparametric statistics , divergence (linguistics) , parametric statistics , mathematical optimization , function (biology) , econometrics , statistics , philosophy , linguistics , evolutionary biology , biology
There are many approaches in the estimation of spectral density. With regard to parametric approaches, different divergences are proposed in fitting a certain parametric family of spectral densities. Moreover, nonparametric approaches are also quite common considering the situation when we cannot specify the model of process. In this paper, we develop a local Whittle likelihood approach based on a general score function, with some special cases of which, the approach applies to more applications. This paper highlights the effective asymptotics of our general local Whittle estimator, and presents a comparison with other estimators. Additionally, for a special case, we construct the one‐step ahead predictor based on the form of the score function. Subsequently, we show that it has a smaller prediction error than the classical exponentially weighted linear predictor. The provided numerical studies show some interesting features of our local Whittle estimator.