z-logo
Premium
Efficient estimation in partially linear single‐index models for longitudinal data
Author(s) -
Cai Quan,
Wang Suojin
Publication year - 2019
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12340
Subject(s) - mathematics , estimator , asymptotic distribution , nonparametric statistics , estimating equations , nonparametric regression , covariance , statistics , asymptotic analysis , kernel (algebra) , combinatorics
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single‐index models for longitudinal data that may be unbalanced. In particular, a new three‐stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resulting estimators properly account for the within‐subject correlation. We show that the parameter estimators are asymptotically semiparametrically efficient. We also show that the asymptotic variance of the link function estimator is minimized when the working error covariance matrices are correctly specified. The new estimators are more efficient than estimators in the existing literature. These asymptotic results are obtained without assuming normality. The finite‐sample performance of the proposed method is demonstrated by simulation studies. In addition, two real‐data examples are analyzed to illustrate the methodology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here