z-logo
Premium
Empirical Uncertain Bayes Methods in Area‐level Models
Author(s) -
Sugasawa Shonosuke,
Kubokawa Tatsuya,
Ogasawara Kota
Publication year - 2017
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12271
Subject(s) - mathematics , estimator , statistics , mean squared error , bayes' theorem , prior probability , poisson distribution , negative binomial distribution , exponential family , context (archaeology) , econometrics , bayesian probability , paleontology , biology
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here