Premium
Fast Inference for Network Models of Infectious Disease Spread
Author(s) -
Romanescu Razvan G.,
Deardon Rob
Publication year - 2017
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12270
Subject(s) - inference , epidemic model , infectious disease (medical specialty) , outbreak , mathematics , context (archaeology) , stochastic modelling , population , statistics , computer science , artificial intelligence , disease , geography , demography , biology , medicine , virology , archaeology , pathology , sociology
Abstract Models of infectious disease over contact networks offer a versatile means of capturing heterogeneity in populations during an epidemic. Highly connected individuals tend to be infected at a higher rate early during an outbreak than those with fewer connections. A powerful approach based on the probability generating function of the individual degree distribution exists for modelling the mean field dynamics of outbreaks in such a population. We develop the same idea in a stochastic context, by proposing a comprehensive model for 1‐week‐ahead incidence counts. Our focus is inferring contact network (and other epidemic) parameters for some common degree distributions, in the case when the network is non‐homogeneous ‘at random’. Our model is initially set within a susceptible–infectious–removed framework, then extended to the susceptible–infectious–removed–susceptible scenario, and we apply this methodology to influenza A data.