Premium
Bayesian Estimators for Small Area Models Shrinking Both Means and Variances
Author(s) -
Sugasawa Shonosuke,
Tamae Hiromasa,
Kubokawa Tatsuya
Publication year - 2017
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12246
Subject(s) - estimator , mathematics , small area estimation , statistics , sampling (signal processing) , bayesian inference , bayesian probability , posterior probability , statistical inference , shrinkage estimator , computer science , bias of an estimator , minimum variance unbiased estimator , filter (signal processing) , computer vision
For small area estimation of area‐level data, the Fay–Herriot model is extensively used as a model‐based method. In the Fay–Herriot model, it is conventionally assumed that the sampling variances are known, whereas estimators of sampling variances are used in practice. Thus, the settings of knowing sampling variances are unrealistic, and several methods are proposed to overcome this problem. In this paper, we assume the situation where the direct estimators of the sampling variances are available as well as the sample means. Using this information, we propose a Bayesian yet objective method producing shrinkage estimation of both means and variances in the Fay–Herriot model. We consider the hierarchical structure for the sampling variances, and we set uniform prior on model parameters to keep objectivity of the proposed model. For validity of the posterior inference, we show under mild conditions that the posterior distribution is proper and has finite variances. We investigate the numerical performance through simulation and empirical studies.