Premium
An Empirical Process View of Inverse Regression
Author(s) -
Portier François
Publication year - 2016
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12209
Subject(s) - mathematics , estimator , covariate , inverse , regression analysis , statistics , sliced inverse regression , regression , range (aeronautics) , dimension (graph theory) , linear regression , econometrics , materials science , geometry , pure mathematics , composite material
Abstract A common approach taken in high‐dimensional regression analysis is sliced inverse regression, which separates the range of the response variable into non‐overlapping regions, called ‘slices’. Asymptotic results are usually shown assuming that the slices are fixed, while in practice, estimators are computed with random slices containing the same number of observations. Based on empirical process theory, we present a unified theoretical framework to study these techniques, and revisit popular inverse regression estimators. Furthermore, we introduce a bootstrap methodology that reproduces the laws of Cramér–von Mises test statistics of interest to model dimension, effects of specified covariates and whether or not a sliced inverse regression estimator is appropriate. Finally, we investigate the accuracy of different bootstrap procedures by means of simulations.