z-logo
Premium
Locally Efficient Semiparametric Estimators for Proportional Hazards Models with Measurement Error
Author(s) -
Xu Yuhang,
Li Yehua,
Song Xiao
Publication year - 2016
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12191
Subject(s) - mathematics , estimator , semiparametric model , statistics , semiparametric regression , econometrics , proportional hazards model
Abstract We propose a new class of semiparametric estimators for proportional hazards models in the presence of measurement error in the covariates, where the baseline hazard function, the hazard function for the censoring time, and the distribution of the true covariates are considered as unknown infinite dimensional parameters. We estimate the model components by solving estimating equations based on the semiparametric efficient scores under a sequence of restricted models where the logarithm of the hazard functions are approximated by reduced rank regression splines. The proposed estimators are locally efficient in the sense that the estimators are semiparametrically efficient if the distribution of the error‐prone covariates is specified correctly and are still consistent and asymptotically normal if the distribution is misspecified. Our simulation studies show that the proposed estimators have smaller biases and variances than competing methods. We further illustrate the new method with a real application in an HIV clinical trial.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here