z-logo
Premium
Likelihood‐based Inference with Missing Data Under Missing‐at‐Random
Author(s) -
Yang Shu,
Kim Jae Kwang
Publication year - 2016
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12184
Subject(s) - mathematics , missing data , inference , statistics , likelihood function , monte carlo method , wald test , likelihood ratio test , estimation theory , algorithm , statistical hypothesis testing , computer science , artificial intelligence
Abstract Likelihood‐based inference with missing data is challenging because the observed log likelihood is often an (intractable) integration over the missing data distribution, which also depends on the unknown parameter. Approximating the integral by Monte Carlo sampling does not necessarily lead to a valid likelihood over the entire parameter space because the Monte Carlo samples are generated from a distribution with a fixed parameter value. We consider approximating the observed log likelihood based on importance sampling. In the proposed method, the dependency of the integral on the parameter is properly reflected through fractional weights. We discuss constructing a confidence interval using the profile likelihood ratio test. A Newton–Raphson algorithm is employed to find the interval end points. Two limited simulation studies show the advantage of the Wilks inference over the Wald inference in terms of power, parameter space conformity and computational efficiency. A real data example on salamander mating shows that our method also works well with high‐dimensional missing data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here