Premium
Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes
Author(s) -
FuentesSantos Isabel,
GonzálezManteiga Wenceslao,
Mateu Jorge
Publication year - 2016
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12183
Subject(s) - mathematics , estimator , point process , statistics , variable kernel density estimation , kernel density estimation , kernel (algebra) , kernel regression , resampling , kernel method , kernel embedding of distributions , computer science , artificial intelligence , support vector machine , combinatorics
Non‐parametric estimation and bootstrap techniques play an important role in many areas of Statistics. In the point process context, kernel intensity estimation has been limited to exploratory analysis because of its inconsistency, and some consistent alternatives have been proposed. Furthermore, most authors have considered kernel intensity estimators with scalar bandwidths, which can be very restrictive. This work focuses on a consistent kernel intensity estimator with unconstrained bandwidth matrix. We propose a smooth bootstrap for inhomogeneous spatial point processes. The consistency of the bootstrap mean integrated squared error (MISE) as an estimator of the MISE of the consistent kernel intensity estimator proves the validity of the resampling procedure. Finally, we propose a plug‐in bandwidth selection procedure based on the bootstrap MISE and compare its performance with several methods currently used through both as a simulation study and an application to the spatial pattern of wildfires registered in Galicia (Spain) during 2006.