Premium
Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models
Author(s) -
Johansen Søren,
Nielsen Bent
Publication year - 2016
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12174
Subject(s) - outlier , mathematics , anomaly detection , estimator , series (stratigraphy) , robust regression , asymptotic analysis , algorithm , robust statistics , statistics , poisson distribution , artificial intelligence , computer science , paleontology , biology
Outlier detection algorithms are intimately connected with robust statistics that down‐weight some observations to zero. We define a number of outlier detection algorithms related to the Huber‐skip and least trimmed squares estimators, including the one‐step Huber‐skip estimator and the forward search. Next, we review a recently developed asymptotic theory of these. Finally, we analyse the gauge, the fraction of wrongly detected outliers, for a number of outlier detection algorithms and establish an asymptotic normal and a Poisson theory for the gauge.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom