Premium
A Model Specification Test For GARCH(1,1) Processes
Author(s) -
Leucht Anne,
Kreiss JensPeter,
Neumann Michael H.
Publication year - 2015
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12158
Subject(s) - mathematics , autoregressive conditional heteroskedasticity , test statistic , heteroscedasticity , autoregressive model , asymptotic distribution , null distribution , econometrics , goodness of fit , statistic , statistics , statistical hypothesis testing , estimator , volatility (finance)
We provide a consistent specification test for generalized autoregressive conditional heteroscedastic (GARCH (1,1)) models based on a test statistic of Cramér‐von Mises type. Because the limit distribution of the test statistic under the null hypothesis depends on unknown quantities in a complicated manner, we propose a model‐based (semiparametric) bootstrap method to approximate critical values of the test and to verify its asymptotic validity. Finally, we illuminate the finite sample behaviour of the test by some simulations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom