Premium
Non‐parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment
Author(s) -
Saarela Olli,
Arjas Elja
Publication year - 2015
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12125
Subject(s) - statistics , bayesian probability , multivariate statistics , econometrics , mathematics , regression , regression analysis , hazard , parametric statistics , proportional hazards model , population , medicine , environmental health , chemistry , organic chemistry
Assessing the absolute risk for a future disease event in presently healthy individuals has an important role in the primary prevention of cardiovascular diseases (CVD) and other chronic conditions. In this paper, we study the use of non‐parametric Bayesian hazard regression techniques and posterior predictive inferences in the risk assessment task. We generalize our previously published Bayesian multivariate monotonic regression procedure to a survival analysis setting, combined with a computationally efficient estimation procedure utilizing case–base sampling. To achieve parsimony in the model fit, we allow for multidimensional relationships within specified subsets of risk factors, determined either on a priori basis or as a part of the estimation procedure. We apply the proposed methods for 10‐year CVD risk assessment in a Finnish population. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics