Premium
Focused information criterion and model averaging based on weighted composite quantile regression
Author(s) -
Xu Ganggang,
Wang Suojin,
Huang Jianhua Z.
Publication year - 2014
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/sjos.12034
Subject(s) - mathematics , frequentist inference , estimator , outlier , model selection , asymptotic distribution , statistics , quantile , bayesian information criterion , quantile regression , context (archaeology) , bayesian inference , bayesian probability , paleontology , biology
We study the focused information criterion and frequentist model averaging and their application to post‐model‐selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non‐parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR‐estimator of a focused parameter is a non‐linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non‐normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure.