Premium
Ocean acidification and photic‐zone anoxia at the Toarcian Oceanic Anoxic Event: Insights from the Adriatic Carbonate Platform
Author(s) -
Ettinger Nicholas P.,
Larson Toti E.,
Kerans Charles,
Thibodeau Alyson M.,
Hattori Kelly E.,
Kacur Sean M.,
Martindale Rowan C.
Publication year - 2021
Publication title -
sedimentology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 108
eISSN - 1365-3091
pISSN - 0037-0746
DOI - 10.1111/sed.12786
Subject(s) - photic zone , anoxic waters , carbonate , geology , carbonate platform , oceanography , biota , ocean acidification , water column , carbonate compensation depth , paleontology , deep sea , climate change , earth science , sediment , sedimentary depositional environment , phytoplankton , ecology , structural basin , materials science , nutrient , metallurgy , biology
Severe global climate change led to the deterioration of environmental conditions in the oceans during the Toarcian Stage of the Jurassic. Carbonate platforms of the Western Tethys Ocean exposed in Alpine Tethyan mountain ranges today offer insight into this period of environmental upheaval. In addition to informing understanding of climate change in deep time, the effect of ancient carbon cycle perturbations on carbonate platforms has important implications for anthropogenic climate change; the patterns of early Toarcian environmental deterioration are similar to those occurring in modern oceans. This study focuses on the record of the early Toarcian Oceanic Anoxic Event ( ca 183.1 Ma) in outcrops of the north‐west Adriatic Carbonate Platform in Slovenia. Amidst environmental deterioration, the north‐west Adriatic Platform abruptly transitioned from a healthy, shallow‐water environment with diverse metazoan ecosystems to a partially drowned setting with low diversity biota and diminished sedimentation. An organic carbon‐isotope excursion of −2.2‰ reflects the massive injection of CO 2 into the ocean‐atmosphere system and marks the stratigraphic position of the Toarcian Oceanic Anoxic Event. A prominent dissolution horizon and suppressed carbonate deposition on the platform are interpreted to reflect transient shoaling of the carbonate compensation depth to unprecedentedly shallow levels as the dramatic influx of CO 2 overwhelmed the ocean’s buffering capacity, causing ocean acidification. Trace metal geochemistry and palaeoecology highlight water column deoxygenation, including the development of photic‐zone anoxia, preceding and during the Toarcian Oceanic Anoxic Event. Ocean acidification and reduced oxygen levels likely had a profoundly negative effect on carbonate‐producing biota and growth of the Adriatic Platform. These effects are consistent with the approximate doubling of the concentration of CO 2 in the ocean‐atmosphere system from pre‐event levels, which has previously been linked to a volcanic triggering mechanism. Mercury enrichments discovered in this study support a temporal and genetic link between volcanism, the Toarcian Oceanic Anoxic Event and the carbonate crisis.