Premium
Automated counting of sand‐sized particles in marine records
Author(s) -
Becker Lukas W. M.,
Hjelstuen Berit O.,
Støren Eivind W. N.,
Sejrup Hans Petter
Publication year - 2018
Publication title -
sedimentology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 108
eISSN - 1365-3091
pISSN - 0037-0746
DOI - 10.1111/sed.12407
Subject(s) - geology , debris , silt , sediment , automated method , iceberg , ice sheet , geomorphology , oceanography , computer science , artificial intelligence
Content and fluxes of ice‐transported sand‐sized and gravel‐sized, lithic particles in marine sediment cores are a common tool used to reconstruct glacial variability. Ice‐rafted debris data sets are currently acquired in several different and often time‐consuming ways, and within various grain‐size fractions. This article proposes a novel workflow using an automated method to count ice‐rafted debris to reduce analysis time and subjectivity. The described method is based on the instrument ‘Morphologi G3’ from Malvern Instruments Limited and includes all pre‐processing and post‐processing steps. This particle characterization tool is an automated microscope combined with a proprietary software package. In this study, the analysis was performed on the 150 to 1000 μ m fraction. If desired, grain counts can be carried out on the entire sand and silt fractions. However, this would result in a considerably greater turnover time. A total of 350 sediment samples from core MD99‐2283, taken on the upper continental slope at the southern part of the north‐east Atlantic margin, were counted with this automated method. In addition, a total of 161 samples were counted manually as a control on the reliability of the scanning. The comparison of automated versus manually counted biogenic and lithic material shows a convincing correlation between the two methods. The turnover time per automatically counted sample is around 20 min, the method requiring less experience and skills than manual counting. The results yield a promising, time‐saving new technique to achieve high‐resolution ice‐rafted debris counting records with acceptable error margins.