Premium
Tectonic control on deltaic sediment dispersal in the middle to upper Turonian Western Cordilleran Foreland Basin, USA
Author(s) -
Hutsky Andrew J.,
Fielding Christopher R.
Publication year - 2017
Publication title -
sedimentology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 108
eISSN - 1365-3091
pISSN - 0037-0746
DOI - 10.1111/sed.12363
Subject(s) - geology , foreland basin , paleontology , progradation , facies , sequence stratigraphy , isopach map , tectonics , outcrop , sedimentary basin , structural basin
Tectonic forcing of delta progradation is increasingly being invoked to explain stratal stacking patterns in foreland basins. Nonetheless, the recognition of different types of tectonic forcing and their consequences for the spatial and temporal distribution of accommodation often rely on incomplete data sets and indirect sequence stratigraphic criteria. Previous work has concluded that the Cenomanian–Turonian Frontier Formation of northern Utah, north‐west Colorado and south‐west Wyoming (‘Vernal Delta’) owes its origin largely to tectonic overprinting of depositional patterns, although the lack of a comprehensive sequence stratigraphic framework for the unit has hampered evaluation of this claim. This study provides detailed facies and sequence stratigraphic analyses based on outcrop sections and wireline log suites from the Uinta, Piceance and Green River basins. Four genetically related intervals were defined and mapped by using regionally traceable stratigraphic horizons (flooding surfaces and sequence boundaries). Internally, intervals are composed of distal and proximal delta front lithologies, and coastal plain facies. Overall, Intervals 1 to 4 form a major basinward projection of coarse clastic strata generated in response to four separate, high‐frequency regressions. Furthermore, a change through time from southward projection of elongate lobes (Intervals 1 and 2) to eastward dispersal and development of a broad, arcuate planform (Intervals 3 and 4) can be explained in terms of changes in prevailing tectonic forcing mechanisms. North–south trending Sevier Orogeny forebulge structures controlled Intervals 1 and 2. West–east progradation (Intervals 3 and 4) was probably controlled by Proterozoic basement lineament reactivation due to Laramide foreland uplifts. Therefore, this study provides direct geological evidence for the initiation of local Laramide deformation as early as 90 Ma. These findings contribute to a more complete understanding of tectonic forcing of coastal to shallow marine successions in foreland basins and the tectonic evolution of the western USA.