z-logo
Premium
Consensus‐based sampling
Author(s) -
Carrillo J. A.,
Hoffmann F.,
Stuart A. M.,
Vaes U.
Publication year - 2022
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/sapm.12470
Subject(s) - mathematical optimization , mathematics , parametric statistics , laplace's method , affine transformation , estimator , euclidean space , gaussian , sampling (signal processing) , algorithm , laplace transform , computer science , mathematical analysis , filter (signal processing) , computer vision , statistics , physics , quantum mechanics , pure mathematics
Abstract We propose a novel method for sampling and optimization tasks based on a stochastic interacting particle system. We explain how this method can be used for the following two goals: (i) generating approximate samples from a given target distribution and (ii) optimizing a given objective function. The approach is derivative‐free and affine invariant, and is therefore well‐suited for solving inverse problems defined by complex forward models: (i) allows generation of samples from the Bayesian posterior and (ii) allows determination of the maximum a posteriori estimator. We investigate the properties of the proposed family of methods in terms of various parameter choices, both analytically and by means of numerical simulations. The analysis and numerical simulation establish that the method has potential for general purpose optimization tasks over Euclidean space; contraction properties of the algorithm are established under suitable conditions, and computational experiments demonstrate wide basins of attraction for various specific problems. The analysis and experiments also demonstrate the potential for the sampling methodology in regimes in which the target distribution is unimodal and close to Gaussian; indeed we prove that the method recovers a Laplace approximation to the measure in certain parametric regimes and provide numerical evidence that this Laplace approximation attracts a large set of initial conditions in a number of examples.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here