Premium
Numerical Bifurcation and Spectral Stability of Wavetrains in Bidirectional Whitham Models
Author(s) -
Claassen Kyle M.,
Johnson Mathew A.
Publication year - 2018
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/sapm.12221
Subject(s) - bifurcation , mathematics , euler equations , stability (learning theory) , mathematical analysis , nonlinear system , bifurcation theory , euler's formula , bifurcation diagram , physics , computer science , quantum mechanics , machine learning
We consider several different bidirectional Whitham equations that have recently appeared in the literature. Each of these models combines the full two‐way dispersion relation from the incompressible Euler equations with a canonical shallow water nonlinearity, providing nonlocal model equations that may be expected to exhibit some of the interesting high‐frequency phenomena present in the Euler equations that standard “long‐wave” theories fail to capture. Of particular interest here is the existence and stability of periodic traveling wave solutions in such models. Using numerical bifurcation techniques, we construct global bifurcation diagrams for each system and compare the global structure of branches, together with the possibility of bifurcation branches terminating in a “highest” singular (peaked/cusped) wave. We also numerically approximate the stability spectrum along these bifurcation branches and compare the stability predictions of these models. Our results confirm a number of analytical results concerning the stability of asymptotically small waves in these models and provide new insights into the existence and stability of large amplitude waves.