Premium
Remarks on a Strongly Nonlinear Model for Two‐Layer Flows with a Top Free Surface
Author(s) -
Barros Ricardo
Publication year - 2016
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/sapm.12104
Subject(s) - baroclinity , nonlinear system , amplitude , hamiltonian system , euler's formula , free surface , mathematical analysis , hamiltonian (control theory) , mathematics , physics , euler equations , classical mechanics , mechanics , quantum mechanics , mathematical optimization
We revisit in this paper the strongly nonlinear long wave model for large amplitude internal waves in two‐layer flows with a free surface proposed by Choi and Camassa [1] and Barros et al. [2]. Its solitary‐wave solutions were the object of the work by Barros and Gavrilyuk [3], who proved that such solutions are governed by a Hamiltonian system with two degrees of freedom. A detailed analysis of the critical points of the system is presented here, leading to some new results. It is shown that conjugate states for the long wave model are the same as those predicted by the fully nonlinear Euler equations. Some emphasis will be given to the baroclinic mode, where interfacial waves are known to change polarity according to different values of density and depth ratios. A critical depth ratio separates these two regimes and its analytical expression is derived directly from the model. In addition, we prove that such waves cannot exist throughout the whole range of speeds.