z-logo
Premium
A Numerical Method for Computing Time‐Periodic Solutions in Dissipative Wave Systems
Author(s) -
Yang Jianke
Publication year - 2015
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/sapm.12071
Subject(s) - mathematics , periodic boundary conditions , ordinary differential equation , dissipative system , mathematical analysis , numerical analysis , boundary value problem , lorenz system , spectral method , computation , initial value problem , differential equation , physics , attractor , algorithm , quantum mechanics
A numerical method is proposed for computing time‐periodic and relative time‐periodic solutions in dissipative wave systems. In such solutions, the temporal period, and possibly other additional internal parameters such as the propagation constant, are unknown priori and need to be determined along with the solution itself. The main idea of the method is to first express those unknown parameters in terms of the solution through quasi‐Rayleigh quotients, so that the resulting integrodifferential equation is for the time‐periodic solution only. Then this equation is computed in the combined spatiotemporal domain as a boundary value problem by Newton‐conjugate‐gradient iterations. The proposed method applies to both stable and unstable time‐periodic solutions; its numerical accuracy is spectral; it is fast‐converging; its memory use is minimal; and its coding is short and simple. As numerical examples, this method is applied to the Kuramoto–Sivashinsky equation and the cubic‐quintic Ginzburg–Landau equation, whose time‐periodic or relative time‐periodic solutions with spatially periodic or spatially localized profiles are computed. This method also applies to systems of ordinary differential equations, as is illustrated by its simple computation of periodic orbits in the Lorenz equations. MATLAB codes for all numerical examples are provided in the Appendices to illustrate the simple implementation of the proposed method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here