Premium
Cell‐Surface Bound Nonreceptors and Signaling Morphogen Gradients
Author(s) -
Wan Frederic Y. M.
Publication year - 2014
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/sapm.12030
Subject(s) - morphogen , robustness (evolution) , cell signaling , perturbation (astronomy) , signal transduction , biological system , extracellular , receptor , biophysics , biology , microbiology and biotechnology , physics , biochemistry , gene , quantum mechanics
The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e., insensitive to change in the face of genetic or environmental perturbations. However just how this is accomplished is a major unanswered question. Recently extensive numerical simulations suggest that robustness of signaling gradients can be achieved through morphogen degradation mediated by cell surface bound nonsignaling receptor molecules (or nonreceptors for short) such as heparan sulfate proteoglycans. The present paper provides a mathematical validation of the results from the aforementioned numerical experiments. Extension of a basic extracellular model to include reversible binding with nonreceptors synthesized at a prescribed rate and mediated morphogen degradation shows that the signaling gradient diminishes with increasing concentration of cell‐surface nonreceptors. Perturbation and asymptotic solutions obtained for (i) low (receptor and nonreceptor) occupancy, and (ii) high nonreceptor concentration permit more explicit delineation of the effects of nonreceptors on signaling gradients and facilitate the identification of scenarios in which the presence of nonreceptors may or may not be effective in promoting robustness.