Premium
Simulation–extrapolation for bias correction with exposure uncertainty in radiation risk analysis utilizing grouped data
Author(s) -
Misumi Munechika,
Furukawa Kyoji,
Cologne John B.,
Cullings Harry M.
Publication year - 2018
Publication title -
journal of the royal statistical society: series c (applied statistics)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 72
eISSN - 1467-9876
pISSN - 0035-9254
DOI - 10.1111/rssc.12225
Subject(s) - extrapolation , observational error , statistics , mathematics , econometrics , robustness (evolution) , regression , distribution (mathematics) , calibration , observational study , mathematical analysis , biochemistry , chemistry , gene
Summary In observational epidemiological studies, the exposure that is received by an individual often cannot be precisely observed, resulting in measurement error, and a common approach to dealing with measurement error is regression calibration (RC). Use of RC, which requires assumptions about the distribution of unknown error‐free (true) variables, leads to concern about the possibility of bias due to misspecification of that distribution. The simulation–extrapolation (SIMEX) method, in contrast, does not require a distributional assumption. However, analyses of large cohorts may be performed by using grouped or person‐year data, and application of SIMEX to grouped data is not straightforward, particularly when there is a mixture of classical and Berkson measurement errors. We compared RC and SIMEX with grouped data analyses to assess robustness of the RC method to misspecification of the true dose distribution. We also applied SIMEX assuming mixtures of classical and Berkson errors and compared the results with those obtained by using RC for classical error only. SIMEX had less bias than RC and performed well regardless of the true dose distribution, whereas RC based on a misspecified true dose distribution showed greater bias than when based on the correctly specified true dose distribution.