z-logo
Premium
Principal stratification analysis using principal scores
Author(s) -
Ding Peng,
Lu Jiannan
Publication year - 2017
Publication title -
journal of the royal statistical society: series b (statistical methodology)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.523
H-Index - 137
eISSN - 1467-9868
pISSN - 1369-7412
DOI - 10.1111/rssb.12191
Subject(s) - causal inference , outcome (game theory) , inference , instrumental variable , principal (computer security) , econometrics , randomized experiment , latent variable , covariate , variable (mathematics) , principal component analysis , observational study , computer science , mathematics , statistics , artificial intelligence , mathematical economics , mathematical analysis , operating system
Summary Practitioners are interested in not only the average causal effect of a treatment on the outcome but also the underlying causal mechanism in the presence of an intermediate variable between the treatment and outcome. However, in many cases we cannot randomize the intermediate variable, resulting in sample selection problems even in randomized experiments. Therefore, we view randomized experiments with intermediate variables as semiobservational studies. In parallel with the analysis of observational studies, we provide a theoretical foundation for conducting objective causal inference with an intermediate variable under the principal stratification framework, with principal strata defined as the joint potential values of the intermediate variable. Our strategy constructs weighted samples based on principal scores, defined as the conditional probabilities of the latent principal strata given covariates, without access to any outcome data. This principal stratification analysis yields robust causal inference without relying on any model assumptions on the outcome distributions. We also propose approaches to conducting sensitivity analysis for violations of the ignorability and monotonicity assumptions: the very crucial but untestable identification assumptions in our theory. When the assumptions required by the classical instrumental variable analysis cannot be justified by background knowledge or cannot be made because of scientific questions of interest, our strategy serves as a useful alternative tool to deal with intermediate variables. We illustrate our methodologies by using two real data examples and find scientifically meaningful conclusions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here