Premium
Bayesian survival modelling of university outcomes
Author(s) -
Vallejos Catalina A.,
Steel Mark F. J.
Publication year - 2017
Publication title -
journal of the royal statistical society: series a (statistics in society)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.103
H-Index - 84
eISSN - 1467-985X
pISSN - 0964-1998
DOI - 10.1111/rssa.12211
Subject(s) - covariate , graduation (instrument) , dropout (neural networks) , context (archaeology) , bayesian probability , duration (music) , selection (genetic algorithm) , bayesian inference , outcome (game theory) , computer science , psychology , econometrics , mathematics , machine learning , artificial intelligence , geography , art , geometry , literature , archaeology , mathematical economics
Summary Dropouts and delayed graduations are critical issues in higher education systems world wide. A key task in this context is to identify risk factors associated with these events, providing potential targets for mitigating policies. For this, we employ a discrete time competing risks survival model, dealing simultaneously with university outcomes and its associated temporal component. We define survival times as the duration of the student's enrolment at university and possible outcomes as graduation or two types of dropout (voluntary and involuntary), exploring the information recorded at admission time (e.g. educational level of the parents) as potential predictors. Although similar strategies have been previously implemented, we extend the previous methods by handling covariate selection within a Bayesian variable selection framework, where model uncertainty is formally addressed through Bayesian model averaging. Our methodology is general; however, here we focus on undergraduate students enrolled in three selected degree programmes of the Pontificia Universidad Católica de Chile during the period 2000–2011. Our analysis reveals interesting insights, highlighting the main covariates that influence students’ risk of dropout and delayed graduation.