z-logo
Premium
A Robust Approach for Mitigating Risks in Cyber Supply Chains
Author(s) -
Zheng Kaiyue,
Albert Laura A.
Publication year - 2019
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.13269
Subject(s) - regret , robustness (evolution) , risk analysis (engineering) , computer science , supply chain , hedge , operations research , business , engineering , ecology , biochemistry , chemistry , marketing , machine learning , biology , gene
In recent years, there have been growing concerns regarding risks in federal information technology (IT) supply chains in the United States that protect cyber infrastructure. A critical need faced by decisionmakers is to prioritize investment in security mitigations to maximally reduce risks in IT supply chains. We extend existing stochastic expected budgeted maximum multiple coverage models that identify “good” solutions on average that may be unacceptable in certain circumstances. We propose three alternative models that consider different robustness methods that hedge against worst‐case risks, including models that maximize the worst‐case coverage, minimize the worst‐case regret, and maximize the average coverage in the ( 1 − α ) worst cases (conditional value at risk). We illustrate the solutions to the robust methods with a case study and discuss the insights their solutions provide into mitigation selection compared to an expected‐value maximizer. Our study provides valuable tools and insights for decisionmakers with different risk attitudes to manage cybersecurity risks under uncertainty.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here