Premium
Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework
Author(s) -
Pescaroli Gianluca,
Alexander David
Publication year - 2018
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.13128
Subject(s) - risk analysis (engineering) , adaptation (eye) , resilience (materials science) , disaster risk reduction , redundancy (engineering) , computer science , cascading failure , risk management , process management , knowledge management , management science , engineering , business , environmental resource management , psychology , electric power system , economics , power (physics) , physics , finance , quantum mechanics , neuroscience , thermodynamics , operating system
In recent years, there has been a gradual increase in research literature on the challenges of interconnected, compound, interacting, and cascading risks. These concepts are becoming ever more central to the resilience debate. They aggregate elements of climate change adaptation, critical infrastructure protection, and societal resilience in the face of complex, high‐impact events. However, despite the potential of these concepts to link together diverse disciplines, scholars and practitioners need to avoid treating them in a superficial or ambiguous manner. Overlapping uses and definitions could generate confusion and lead to the duplication of research effort. This article gives an overview of the state of the art regarding compound, interconnected, interacting, and cascading risks. It is intended to help build a coherent basis for the implementation of the Sendai Framework for Disaster Risk Reduction (SFDRR). The main objective is to propose a holistic framework that highlights the complementarities of the four kinds of complex risk in a manner that is designed to support the work of researchers and policymakers. This article suggests how compound, interconnected, interacting, and cascading risks could be used, with little or no redundancy, as inputs to new analyses and decisional tools designed to support the implementation of the SFDRR. The findings can be used to improve policy recommendations and support tools for emergency and crisis management, such as scenario building and impact trees, thus contributing to the achievement of a system‐wide approach to resilience.