z-logo
Premium
Estimation of the Leukemia Risk in Human Populations Exposed to Benzene from Tobacco Smoke Using Epidemiological Data
Author(s) -
Fiebelkorn Stacy,
Meredith Clive
Publication year - 2018
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.12956
Subject(s) - leukemia , myeloid leukemia , tobacco smoke , environmental health , benzene , epidemiology , risk assessment , medicine , toxicology , population , immunology , biology , chemistry , organic chemistry , computer security , computer science
Several epidemiological studies have demonstrated an association between occupational benzene exposure and increased leukemia risk, in particular acute myeloid leukemia (AML). However, there is still uncertainty as to the risk to the general population from exposure to lower environmental levels of benzene. To estimate the excess risk of leukemia from low‐dose benzene exposure, various methods for incorporating epidemiological data in quantitative risk assessment were utilized. Tobacco smoke was identified as one of the main potential sources of benzene exposure and was the focus of this exposure assessment, allowing further investigation of the role of benzene in smoking‐induced leukemia. Potency estimates for benzene were generated from individual occupational studies and meta‐analysis data, and an exposure assessment for two smoking subgroups (light and heavy smokers) carried out. Subsequently, various techniques, including life‐table analysis, were then used to evaluate both the excess lifetime risk and the contribution of benzene to smoking‐induced leukemia and AML. The excess lifetime risk for smokers was estimated at between two and six additional leukemia deaths in 10,000 and one to three additional AML deaths in 10,000. The contribution of benzene to smoking‐induced leukemia was estimated at between 9% and 24% (U pper CL 14–31%). For AML this contribution was estimated as 11–30% (U pper CL 22–60%). From the assessments carried out here, it appears there is an increased risk of leukemia from low‐level exposure to benzene and that benzene may contribute up to a third of smoking‐induced leukemia. Comparable results from using methods with varying degrees of complexity were generated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here