Premium
Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System
Author(s) -
Ouyang Min,
Tian Hui,
Wang Zhenghua,
Hong Liu,
Mao Zijun
Publication year - 2019
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.12708
Subject(s) - vulnerability (computing) , vulnerability assessment , critical infrastructure , identification (biology) , node (physics) , computer science , computer security , engineering , psychology , biology , botany , structural engineering , psychological resilience , psychotherapist
This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large‐scale systems. This article introduces three SLFs models: node centered SLFs, district‐based SLFs, and circle‐shaped SLFs, and proposes a SLFs‐induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs‐induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions.