Premium
Methods to Explore Uncertainty and Bias Introduced by Job Exposure Matrices
Author(s) -
Greenland Sander,
Fischer Heidi J.,
Kheifets Leeka
Publication year - 2016
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.12438
Subject(s) - confounding , exposure assessment , occupational exposure , measure (data warehouse) , econometrics , environmental health , psychology , statistics , computer science , medicine , mathematics , data mining
Job exposure matrices (JEMs) are used to measure exposures based on information about particular jobs and tasks. JEMs are especially useful when individual exposure data cannot be obtained. Nonetheless, there may be other workplace exposures associated with the study disease that are not measured in available JEMs. When these exposures are also associated with the exposures measured in the JEM, biases due to uncontrolled confounding will be introduced. Furthermore, individual exposures differ from JEM measurements due to differences in job conditions and worker practices. Uncertainty may also be present at the assessor level since exposure information for each job may be imprecise or incomplete. Assigning individuals a fixed exposure determined by the JEM ignores these uncertainty sources. We examine the uncertainty displayed by bias analyses in a study of occupational electric shocks, occupational magnetic fields, and amyotrophic lateral sclerosis.