Premium
QMRA for Drinking Water: 1. Revisiting the Mathematical Structure of Single‐Hit Dose‐Response Models
Author(s) -
Nilsen Vegard,
Wyller John
Publication year - 2016
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.12389
Subject(s) - poisson distribution , independence (probability theory) , expression (computer science) , mathematics , mathematical model , statistics , set (abstract data type) , exponential function , computer science , mathematical analysis , programming language
Dose‐response models are essential to quantitative microbial risk assessment (QMRA), providing a link between levels of human exposure to pathogens and the probability of negative health outcomes. In drinking water studies, the class of semi‐mechanistic models known as single‐hit models, such as the exponential and the exact beta‐Poisson, has seen widespread use. In this work, an attempt is made to carefully develop the general mathematical single‐hit framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen infectivity. This allows a precise interpretation of the so‐called single‐hit probability and precise identification of a set of statistical independence assumptions that are sufficient to arrive at single‐hit models. Further analysis of the model framework is facilitated by formulating the single‐hit models compactly using probability generating and moment generating functions. Among the more practically relevant conclusions drawn are: (1) for any dose distribution, variation in host susceptibility always reduces the single‐hit risk compared to a constant host susceptibility (assuming equal mean susceptibilities), (2) the model‐consistent representation of complete host immunity is formally demonstrated to be a simple scaling of the response, (3) the model‐consistent expression for the total risk from repeated exposures deviates (gives lower risk) from the conventional expression used in applications, and (4) a model‐consistent expression for the mean per‐exposure dose that produces the correct total risk from repeated exposures is developed.