Premium
A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging
Author(s) -
Kim Steven B.,
Kodell Ralph L.,
Moon Hojin
Publication year - 2014
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.12104
Subject(s) - goodness of fit , model selection , robustness (evolution) , point estimation , statistics , range (aeronautics) , interval estimation , benchmark (surveying) , econometrics , mathematics , computer science , confidence interval , engineering , biology , biochemistry , geodesy , gene , geography , aerospace engineering
In chemical and microbial risk assessments, risk assessors fit dose‐response models to high‐dose data and extrapolate downward to risk levels in the range of 1–10%. Although multiple dose‐response models may be able to fit the data adequately in the experimental range, the estimated effective dose (ED) corresponding to an extremely small risk can be substantially different from model to model. In this respect, model averaging (MA) provides more robustness than a single dose‐response model in the point and interval estimation of an ED. In MA, accounting for both data uncertainty and model uncertainty is crucial, but addressing model uncertainty is not achieved simply by increasing the number of models in a model space. A plausible set of models for MA can be characterized by goodness of fit and diversity surrounding the truth. We propose a diversity index (DI) to balance between these two characteristics in model space selection. It addresses a collective property of a model space rather than individual performance of each model. Tuning parameters in the DI control the size of the model space for MA.