z-logo
Premium
Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes
Author(s) -
Han SeungRyong,
Rosowsky David,
Guikema Seth
Publication year - 2014
Publication title -
risk analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 130
eISSN - 1539-6924
pISSN - 0272-4332
DOI - 10.1111/risa.12102
Subject(s) - reliability (semiconductor) , reliability engineering , computer science , bayesian probability , power (physics) , engineering , artificial intelligence , physics , quantum mechanics
Utility systems such as power and communication systems regularly experience significant damage and loss of service during hurricanes. A primary damage mode for these systems is failure of wooden utility poles that support conductors and communication lines. In this article, we present an approach for combining structural reliability models for utility poles with observed data on pole performance during past hurricanes. This approach, based on Bayesian updating, starts from an imperfect but informative prior and updates this prior with observed performance data. We consider flexural and foundation failure mechanisms in the prior, acknowledging that these are an incomplete, but still informative, subset of the possible failure mechanisms for utility poles during hurricanes. We show how a model‐based prior can be updated with observed failure data, using pole failure data from Hurricane Katrina as a case study. The results of this integration of model‐based estimates and observed performance data then offer a more informative starting point for power system performance estimation for hurricane conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here