z-logo
Premium
Structural Analysis of the Luowei Orefield in Xidamingshan, Guangxi, China
Author(s) -
Li Saisai,
Feng Zuohai,
Fu Wei,
Li Zemin,
Hu Rongguo
Publication year - 2020
Publication title -
resource geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.597
H-Index - 43
eISSN - 1751-3928
pISSN - 1344-1698
DOI - 10.1111/rge.12220
Subject(s) - geology , sinistral and dextral , mineralization (soil science) , geochemistry , echelon formation , hydrothermal circulation , bedding , shear zone , shear (geology) , tectonics , seismology , petrology , biology , soil science , horticulture , soil water
Many types of hydrothermal deposits (e.g. W, Bi, Pb, Zn, Ag) are confined by faults and hidden granodiorite in the Luowei Orefield in Xidamingshan, Guangxi, China. The orebodies in the Luowei W–Bi deposit are predominantly layered and distributed along bedding in sandstones of the Cambrian Xiaoneichong Formation. The orebodies in the Lujing Pb–Zn deposit are controlled mainly by west‐south‐west (WSW)‐trending faults, and those in the Fenghuangshan Ag deposit are controlled mainly by west‐north‐west (WNW)‐trending faults, which were reverse faults during mineralization and were later reactivated as sinistral strike‐slip faults. The Luowei fault was formed postmineralization and resulted in sinistral displacement of the subsurface granodiorite and the Cambrian strata. A tectonomagmatic mineralization model of the Luowei Orefield is proposed, and the following conclusions were made. (i) Under a regional N–S compressive stress regime, WSW‐ and WNW‐trending reverse faults and N–S‐trending tensional fractures were formed. (ii) Magma intruded along the tensional fractures. Under the force of magmatic thermodynamics, mineralizing fluid migrated along bedding planes in sandstones and formed W–Bi orebodies at favorable sites. Some fluid migrated along WSW‐ and WNW‐trending faults to sites farther from the magma source, forming vein‐type Pb–Zn and Ag orebodies. (iii) After mineralization, under ~E–W compression, a NW‐trending left‐lateral slip fault was formed, cutting the subsurface granodiorite and orebodies. Concurrently, sinistral shear slip occurred on WNW‐trending ore‐controlling faults. However, the small displacement on these faults did not change the overall distributions of the rock mass and orebodies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here