Premium
Aligning mouse models of asthma to human endotypes of disease
Author(s) -
Martin Rebecca A.,
Hodgkins Samantha R.,
Dixon Anne E.,
Poynter Matthew E.
Publication year - 2014
Publication title -
respirology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 85
eISSN - 1440-1843
pISSN - 1323-7799
DOI - 10.1111/resp.12315
Subject(s) - asthma , medicine , disease , endotype , pathophysiology of asthma , context (archaeology) , biomarker , immunology , atopy , intensive care medicine , pathology , paleontology , biochemistry , chemistry , biology
Substantial gains in understanding the pathophysiologic mechanisms underlying asthma have been made using preclinical mouse models. However, because asthma is a complex, heterogeneous syndrome that is rarely due to a single allergen and that often presents in the absence of atopy, few of the promising therapeutics that demonstrated effectiveness in mouse models have translated into new treatments for patients. This has resulted in an urgent need to characterize T helper ( Th ) 2 ‐low, non‐eosinophilic subsets of asthma, to study models that are resistant to conventional treatments such as corticosteroids and to develop therapies targeting patients with severe disease. Classifying asthma based on underlying pathophysiologic mechanisms, known as endotyping, offers a stratified approach for the development of new therapies for asthma. In preclinical research, new models of asthma are being utilized that more closely resemble the clinical features of different asthma endotypes, including the presence of interleukin‐17 and a Th17 response, a biomarker of severe disease. These models utilize more physiologically relevant sensitizing agents, exacerbating factors and allergens, as well as incorporate time points that better reflect the natural history and chronicity of clinical asthma. Importantly, some models better represent non‐classical asthma endotypes that facilitate the study of non‐ Th2 ‐driven pathology and resemble the complex nature of clinical asthma, including corticosteroid resistance. Placing mouse asthma models into the context of human asthma endotypes will afford a more relevant approach to the understanding of pathophysiological mechanisms of disease that will afford the development of new therapies for those asthmatics that remain difficult to treat.