z-logo
Premium
Impacts of remotely sensed environmental drivers on coral outplant survival
Author(s) -
Foo Shawna A.,
Asner Gregory P.
Publication year - 2021
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/rec.13309
Subject(s) - coral , coral reef , environmental science , coral bleaching , reef , range (aeronautics) , climate change , atoll , environmental change , ecology , oceanography , photosynthetically active radiation , biology , geology , materials science , photosynthesis , botany , composite material
Globally, coral reefs are degrading due to a variety of stressors including climate change and pollution. Active restoration is an important effort for sustaining coral reefs where, typically, coral fragments are outplanted onto degraded reefs. Coral outplants, however, can experience mortality in response to a range of stressors. We pair results of outplant monitoring observations with satellite‐based measurements of multiple oceanographic variables to estimate the relative importance of each driver to coral outplant survival. We find that when considering mean environmental conditions experienced by outplants during the monitoring period, particulate organic carbon (POC) levels are most important in determining outplant survival, with certain levels of POC beneficial for outplants. Sea surface temperature anomalies (SSTA) are also important determinants of outplant survival, where survival is greatest in regions with minimal or slightly negative anomalies. Survival also increases with increasing distance to land, likely due to a reduction in negative ridge‐to‐reef effects on coral outplants. When considering the range (min–max) of environmental conditions experienced during the monitoring period, large fluctuations in photosynthetically active radiation (PAR) and POC are most important in determining outplant survival. Increasing outplant depth can help to counter the negative impacts of large fluctuations in environmental variables. We find that a variety of remotely sensed oceanographic variables have significant impacts on survival and should be considered in coral restoration planning to help evaluate potential restoration sites and ultimately maximize coral outplant survival.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here