z-logo
Premium
Soil reconstruction after mining fails to restore soil function in an Australian arid woodland
Author(s) -
Duncan Corrine,
Good Megan K.,
Sluiter Ian,
Cook Simon,
Schultz Nick L.
Publication year - 2020
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/rec.13166
Subject(s) - environmental science , arid , soil water , ecosystem , soil science , subsoil , biogeochemical cycle , topsoil , hydrology (agriculture) , geology , ecology , paleontology , geotechnical engineering , biology
The biogeochemical properties of soils drive ecosystem function and vegetation dynamics, and hence soil restoration after mining should aim to reinstate the soil properties and hydrological dynamics of remnant ecosystems. The aim of this study is to assess soil structure in two vegetation types in an arid ecosystem, and to understand how these soil properties compare to a reconstructed soil profile after mining. In an arid ecosystem in southeast Australia, soil samples were collected at five depths (to 105 cm) from remnant woodland and shrubland sites, and sites either disturbed or totally reconstructed after mining. We assessed soil physico‐chemical properties and microbial activity. Soils in the remnant arid ecosystem had coarse‐textured topsoils that overlay clay horizons, which allows water to infiltrate and avoid evaporation, but also slows drainage to deeper horizons. Conversely, reconstructed soils had high sand content at subsoil horizons and high bulk density and compaction at surface layers (0–20 cm). Reconstructed soils had topsoils with higher pH and electrical conductivity. The reconstructed soils did not show increased microbial activity with time since restoration. Overall, the reconstructed soil horizons were not organized in a way that allowed rainfall infiltration and water storage, as is imperative to arid‐zone ecosystem function. Future restoration efforts in arid ecosystems should focus on increasing sand content of soils near the surface, to reduce evaporative water loss and improve soil quality and plant health.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here