z-logo
Premium
Successional dynamics of soil fungal diversity along a restoration chronosequence post‐coal mining
Author(s) -
Ngugi Michael R.,
Fechner Nigel,
Neldner Victor J.,
Dennis Paul G.
Publication year - 2020
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/rec.13112
Subject(s) - chronosequence , edaphic , ecological succession , vegetation (pathology) , ecology , revegetation , species richness , restoration ecology , biology , plant community , environmental science , ecosystem , soil water , medicine , pathology
Soil disruption from open‐cut mining practices can adversely impact microbial communities and the ecosystem services that they mediate. Despite this, assessment of impacts of soil disruption, and the subsequent recovery of microbial communities is rarely studied. Monitoring of ecological restoration success on mine sites has traditionally focused on vegetation; however, most plants rely, at least in part, on associations with soil fungi for enhanced nutrient and water acquisition. Here, we used high‐throughput phylogenetic marker gene sequencing to characterize the diversity of soil fungal communities along a restoration chronosequence ranging from 3 to 23 years at a rehabilitated mine site. We used nonmined analogue sites as a baseline for comparative purposes and examined the associations of soil fungal communities with soil physicochemical and aboveground vegetation variables. Fungal richness on rehabilitated sites was significantly larger than on nonmined sites, suggesting that mixing of topsoil during stockpiling resulted in a composite microbial community. Fungal community composition was significantly influenced by edaphic variables and the length of rehabilitation, with mined sites becoming more similar to nonmined sites over time. Fungal populations associated with ectomycorrhizae were relatively more abundant than those associated with arbuscular mycorrhizae and declined in response to disturbance, but recovered over time on the woody dominated sites indicating a strong coupling of these fungi with aboveground vegetation. Our data indicate that soil fungal diversity is a useful bioindicator of soil restoration in mined sites and may complement more traditional vegetation‐based surveys.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here